Baire Property and Axiom of Choice
نویسندگان
چکیده
منابع مشابه
Products , the Baire category theorem , and the axiom of dependent choice
In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (1) The axiom of dependent choice. (2) Products of compact Hausdorff spaces are Baire. (3) Products of pseudocompact spaces are Baire. (4) Products of countably compact, regular spaces are Baire. (5) Products of regular-closed spaces are Baire. (6) Products of Čech-complete...
متن کاملComputing with Sequences, Weak Topologies and the Axiom of Choice
We study computability on sequence spaces, as they are used in functional analysis. It is known that non-separable normed spaces cannot be admissibly represented on Turing machines. We prove that under the Axiom of Choice non-separable normed spaces cannot even be admissibly represented with respect to any compatible topology (a compatible topology is one which makes all bounded linear function...
متن کاملBanach-Tarski paradox using pieces with the property of Baire.
In 1924 Banach and Tarski, using ideas of Hausdorff, proved that there is a partition of the unit sphere S2 into sets A1,...,Ak,B1,..., Bl and a collection of isometries [sigma1,..., sigmak, rho1,..., rhol] so that [sigma1A1,..., sigmakAk] and [rho1B1,..., rholBl] both are partitions of S2. The sets in these partitions are constructed by using the axiom of choice and cannot all be Lebesgue meas...
متن کاملBanach-tarski Decompositions Using Sets with the Property of Baire
Perhaps the most strikingly counterintuitive theorem in mathematics is the "Banach-Tarski paradox": A ball in R3 can be decomposed into finitely many pieces which can be rearranged by rigid motions and reassembled to form two balls of the same size as the original. The Axiom of Choice is used to construct the decomposition; the "paradox" is resolved by noting that the pieces cannot be Lebesgue ...
متن کاملOn characterizations of the fully rational fuzzy choice functions
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
متن کامل